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Abstract—This paper reports an analytical and numerical study of natural convection heat and mass transfer
through a vertical porouslayer subjected to uniform fluxes of heat and mass from the side. The flow is driven by
the combined buoyancy effect due to temperature and concentration variations through the porous medium.
The first part of the study contains an analytical Oseen-linearized solution for the boundary-layer regime and
Le = 1,and asimilarity solution for heat-transfer-driven flows(n = 0)and Le > 1. Thesecond part ofthestudy
contains an extensive series of numerical experiments that validate the analytical results and provide heat and
mass transfer data in the domain not covered by analysis. The numerical results cover the Rayleigh number
range 20 < Ra < 10, the buoyancy ratio range — 11 < n < 9, the geometric aspect ratiorange | < H/L < 4
and the Lewis number range 0.03 < Le < 40.

INTRODUCTION

THE PURPOSE of this report is to summarize a
fundamental analytical and numerical study of heat
and mass transfer by natural convection in a porous
medium saturated with fluid. The special feature of this
study is the focus on flows driven by conditions of
uniform heat and mass flux imposed along the two
vertical side walls of the porous layer. This set of
conditions comes closest to simulating the boundary
conditions for heat and mass transfer in insulation
systems exposed to thermal radiation heating (e.g. the
migration of moisture through double walls filled with
fibrous or granular insulation).

Although as demonstrated by a number of recent
monographs [1-3] the phenomenon of natural
convection through porous media has received
considerable attention, the bulk of the existing work
has been devoted to pure natural convection heat
transfer, not to phenomena driven by the combined
buoyancy effect due to temperature and concentration
variations through the porous medium. The necessary
first step in eclucidating the main features of the
combined heat and mass transfer phenomenon
addressed in this paper has just been reported in ref. [4],
in which pure scaling arguments were used to identify
and sort out the most basic scales that characterize the
flow, temperature and concentration fields in the
immediate vicinity of a single vertical surface imbedded
in a porous medium of different temperature and
concentration.

In connection with the combined heat and mass
transfer natural convection phenomenon of ref. [4],
considerably more important from a practical
standpoint is the configuration sketched in Fig. 1,
namely, the vertical porous layer of finite thickness L
and finite height H. In the first phase of our work on this
configuration [5], we modeled the two vertical side
walls as impermeable surfaces with imposed constant

temperature and concentration. We were able to show
that numerical simulations of the phenomenon are in
agreement with the results of the scale analysis
conducted along the lines of ref. [4] for the single-
surface configuration. However, due to the constant
temperature and concentration imposed along the
vertical boundaries, we were unable to develop closed-
form analytical solutions for engineering heat and mass
transfer calculations, to improve on the order-of-
magnitude estimates produced by scale analysis.
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FIG. 1. Schematic of a two-dimensional porous layer subjected

to uniform heat and mass fluxes in the horizontal direction.

403



404 O. V. TrevisaN and A. BEJAN

core temperature gradient

core concentration gradient

concentration boundary-layer profile

specific heat at constant pressure

concentration

C average side-to-side concentration

difference

mass diffusivity

similarity concentration profile

gravitational acceleration

height of porous layer

lateral mass flux

thermal conductivity

permeability

horizontal dimension (thickness) of porous

layer

Le Lewis number

m  number of control volumes in the vertical
direction

n  buoyancy ratio, equation (18)

Nu overall Nusselt number, equation (31)

p  number of control volumes in the
horizontal direction

q" lateral heat flux

Ra Rayleigh number, equation (34)

s grid nonuniformity parameter (Fig. 2 and

Table 2).
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NOMENCLATURE

Sh overall Sherwood number, equation (32)

t  temperature boundary-layer profile

T temperature

AT average side-to-side temperature difference
u,v velocity components (Fig. 1)

x,y Cartesian coordinates (Fig. 1)

X% horizontal position, L —x, Fig. 1

y  vertical position, equation (43).

Greek symbols

thermal diffusivity

thermal expansion coefficient
concentration expansion coefficient
parameter, equation (17)

constant, equation (41)

similarity variable

kinematic viscosity

density

streamfunction.

o =3 &‘ﬁgh‘abg

Subscripts and superscripts
R properties of the right-side boundary-layer
region, equations (24)—(26)
0  properties of the geometric center of the
porous layer
dimensionless variables, equation (47).

In the analytical and numerical work described in the
present report the vertical side walls are assumed to be
subjected to uniform fluxes of heat and mass, ¢” and j".
This modelling decision is motivated first by the more
frequent occurrence of practical conditions that
approach the constant ¢” and j” descriptionrather than
the constant AT and AC model of ref. [5]; eg.
insulation layers exposed to radiation heating [6], and
systems where the resistance to mass transfer through
the side wall is greater than the mass transfer resistance
contributed by the natural circulation process through
the porous medium. The second reason for studying the
constantq” andj” configuration of Fig. 1 is that with this
new model it is possible to develop closed-form
analytical solutions for overall heat and mass transfer
calculations. Thus, one of the objectives of the
numerical experiments summarized in this report is to
validate and to show the range of applicability of the
analytical results made possible by the constant g”, j”
model.

ANALYSIS OF THE
BOUNDARY-LAYER REGIME

Consider the two-dimensional rectangular porous
medium sketched in Fig. 1. The vertical walls are

subjected to uniform fluxes of heat and mass,

oT

g =—k[Z- , constant (1
0x x=0,L
ac

j==D (_) , constant @
0x /c=o,L

while the horizontal walls are regarded as being
insulated and impermeable. Note that according to
Fig. 1, the boundary conditions (1) and (2) mean heating
and mass influx at x = 0, and cooling combined with
mass efflux at x = L. The equations governing
the conservation of mass, momentum, energy
and constituent in the solution-saturated porous
medium are [1, 2]

ou  ov
L =0 3
0x + dy 3)
v ou gK{ oT ac
I g2 = 4
ox oy v ('B ox *he 6x> @
oT + aT _ °T + T ()
Yox T oy *\ox2 ay?
a—C+vaC—D a2C-+‘é2£ (6)
“ox Ty T T\ T a2 )
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In writing the above equations, the porous medium has
been modeled as homogeneous and with the solid and
liquid phases in local thermal equilibrium. The solution
that saturates the porous matrix is modeled as a
Boussinesq-incompressible fluid whose density varies
as p = po[1—B(T — To)— Bc(C—Co)] where f and B¢
are the thermal and concentration expansion
coefficients [4]. The other symbols appearing in
equations (3)-(6) are defined in the Nomenclature and
directly on Fig. 1.

In this section we present analyses of the boundary-
layer regime, that is, of the regime where the fluid
circulates through slender regions that line the two
vertical walls in such a way that the thickness of each
slender region is smaller than the horizontal extent of
the porous layer, L(Fig. 1). According to the boundary-
layer theory, the solution-saturated porous medium
filling each boundary-layer region is governed by
equations simpler than equations (4)+6), namely ['1, 2]

dv gK{_oT ac
5—7<ﬂ5x—+ﬂch—> Y
orT oT 3T
—tV——=a— 8
" ox T dy ¥ oxt ®)
0:C
ua—c oc )

x 'y Ve

In what follows we outline two analytical solutions
pertaining to the boundary layer regime : each solution
applies in a certain range of values of the porous
medium Lewis number Le = a/D.

Oseen-linearized solution

It is possible to construct a matched boundary-layer
solution for the constant ¢” and j” configuration of Fig.
1, by following the example presented in ref. [6] for
the limiting problem in which the mass transfer from the
side is absent. Summarizing the results of ref. [6], the
main features of the matched boundary-layers solution
for uniform heat flux from the side are : (1) constant, y-
independent, boundary-layer thickness ; (2) motionless
core region (u = 0, v = 0); (3) linearly stratified core
region; and (4) side-wall temperature that increases
linearly with altitude at the same rate as the core
temperature. These properties, in the context of the
more general heat and mass transfer problem
considered in this study, suggest the following
transformation for the temperature and concentration
fields in each vertical boundary-layer region,

T(x,y) = t{(x)+ Ty +ay (10)

(1n

where the constants T, and C, are the temperature and
concentration measured in the center of the porous
layer (x = L/2, y = 0 on Fig. 1), and where a and b are
the unknown constant vertical gradients of tempera-
ture and concentration measured through the core
region. Functions t(x) and c(x) are the boundary-layer
temperature and concentration profiles, respectively ;

C(x, y) = c(x)+ Co+ by
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in the left-side boundary-layer region on Fig. 1, these
profiles have the property

lim (£, ¢) = 0.

X

(12)

Subjecting the boundary-layer equations (7)+9) to
the above transformation yields, in order,

v =" g4 peo (13)
av = ot" (14)
bv = D¢". (15)

The boundary-layer momentum equation (13) resulted
from integrating equation (7) across the boundary layer
and claiming the core limiting condition of equation
(12). Eliminating v and ¢ between equations (13}15)
yields the fourth-order linear equation for #(x),

tiv_,ylt// = 0 (16)

K
=R (17

av
ne abBc a8)
Daf

whose general solution is

Hx) = A7+ A e+ Ay + Ayx. 19)

Invoking the core condition (12) and the constant heat
flux condition (1), the boundary-layer temperature
profile (19) reduces to

1) =L e (20)
vk
The concentration profile ¢(x) can be obtained by
first dividing equations (14) and (15) side-by-side and
integrating the resulting equation twice,
abq”

c(x) =——e™"™,

21
Daky @)

Applying the constant mass flux condition (2) to the
concentration profile (21) yields an important
relationship between the core stratification parameters
a and b,

a_q'a

b jk’
Finally, the vertical velocity profile compatible with
results (20), (21) and equation (13) is

22

ayq”
— e ¥x
ak

Summarizing the results developed so far, the
boundary-layer region lining the left vertical wall in
Fig. 1is characterized by the velocity distribution (23),
the temperature distribution (10) and (20), and the
concentration distribution (11) and (21). Based on the
centrosymmetry of the flow pattern we can write
immediately the appropriate expressions for the right-

v =

(23)
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side of the porous layer,

"

q ..
’I;lz—ge 4 +To+ay (24)
j// _y i
=——e "™ 4+Cy+b 2
CR Dye +Co+0y (25)
a,yqr/ el
=3 g )
Ur ak (26)

where x _ is the horizontal coordinate measured in the
negative x-direction away from the right wall (x = L).
At this point the solution depends on the unknown core
temperature and concentration gradients a and b.
These constants can be determined by first recognizing
that the net flow of enthalpy through the porous layer
must at all ys be balanced by vertical thermal diffusion
downward through the core [6],

0 © L aT
pepTdx+ | peypTrdx. = | k-——dx (27)
0 0 o Oy
and, second, by writing the equivalent mass transfer
condition (demanded by the zero mass flow through the
top and bottom ends of the porous layer),

@ © L oC
vCdx+ | vgCpdx_=1{ D—dx. (28)
I\ 0 o Oy
Conditions (27) and (28) yield, respectively,
qf/
= 29
T )
jﬂ
b=—"——70. 30
DOD 0

An important limitation of the analytical solution
concluded above is determined by substituting the
newly derived core gradients (a, b) into condition (22):
the resultis Le = 1, i.e. the Oseen-linearized solution is
valid only for solution-saturated porous media in
which the thermal diffusivity is the same as the mass
diffusivity of constituent.

The heat and mass transfer engineering contribution
of the solution reported above is the following set of

analytical expressions for overall Nusselt and
Sherwood numbers,
qll 1
= =_9yL 31
Nu=amL =27 G
Sh = ro_1 L (32)
~paciL 27

where AT and AC are the side-to-side temperature
difference and concentration difference. Recalling the
original y notation, equation (17), and the result
obtained for a, equation (29), the Nuand Sh expressions
can be rewritten as

1/H

~4/5
Nu=Sh=-= <f) Ra*3(1 +n)*3 (33)
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where Rais the Rayleigh number based on uniform heat
flux

_ Kgﬂqu”

Ra
ovk

(34)

The analytical results culminating with equation (33)
are valid provided the thermal and concentration
boundary layers are distinct (i.e. thinner than L). Since
the Nu and Sh definitions (31) and (32) are based on the
pure diffusion estimates, the distinct-boundary-layers
requirement translates into the condition (Nu, Sh) > 1,
or (L/H)Ra"*(1+n)*? > O(1).

One final observation concerns the sign of (1+n),
which was assumed positive in equation (17). The heat
and mass transfer solution obtained for positive (1 + n)
values holds also for negative values if in equation (33)
the term (1 + n) is replaced by |1 + n|. In order to see the
generality of equation (33), consider that the
momentum equation (7) can be rewritten as:

v Kgp oT

R ] B Ll
0x L+l v

e ()

Since 0T/dx does not change sign (¢” is imposed, as
shown in Fig. 1), the change in the sign of (1 + n) has the
effect of changing the sign of v, i.e. that of reversing the
flow. Equation (33) with (1 + n) replaced by |1 +n], is
supported by the numerical results discussed later in
this paper.

Similarity solution for Le » 1 and |n| « 1

The effect of Lewis number on the mass transfer rate
can be determined analytically by focusing on the so-
called ‘heat-transfer-driven flow’ limit [4] where
parameter n is in absolute value considerably smaller
than one. In this limit the velocity and temperature
fields are the ones reported already for the pure heat
transfer problem [6]. If we now consider the mass
transfer effected by this heat-transfer-driven flow, we
must solve the constituent conservation equation (9)
with u = 0 and v given by equation (23) withn = 0. In
the limit of large Lewis numbers, the concentration
boundary-layer region in which equation (9) is to be
solved is much thinner than the velocity boundary-
layer region. Consequently, in place of » in equation (9)
we can use v(x) evaluated at x = 0, and the constituent
conservation equation reduces to

oC a*C

w05 =D

e (35)

This equation can be solved via similarity formulation
subject to the condition of uniform mass flux from the
side, equation (2), and that of a constant average
concentration core filling the porous medium situated
outside the concentration boundary layer. Omitting
the algebra, the similarity formulation of the mass
transfer problem is

1
fralf=5=0 (36)
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f'=-1 at 4=0 (37)
f__,() as p— (38)
where
c—co=(L5) rminra® (o)
°o=\Le? "D
A (40)
n=Xy i‘e‘y
H /5
i=(z) Ra'S, const[6]  (41)
x
= HRa “
oy 1 .
=2 +-, Fig 1. 4
y=4+5 Figl 43)

The problem sstated in equations (36){(43) was solved
numerically using a fourth-order Runge-Kutta scheme
and integrating equation (36} from n = 0 to 5 values of
10 or greater in accordance with the standard shooting
method. The numerical solution reported in Table 1
was obtained using the shooting success criterion
f < 107 *in place of the boundary condition (38). The
An step used to perform the integration was 0.001 ; this
step size was found to be small enough to render the
solution insensitive to further decreases in the step size.

The mass transfer result contained in the similarity
solution of Table 1 can be reported as the overall
Sherwood number

Sh = I 0.665 (E-)““OLe”zRa”“’ 44)
" DAC/L T \H
where AC is the H-averaged concentration difference
between the two sides of the porous layer,
2 Hi2

AC==
H —Hj2

(C~Cqlizo dy 4s5)
with the difference C — C,, being given by equation (39).
The factor 2 appearing on the RHS of equation (45)
accounts for the fact that the average side-to-side

Table 1. Similarity concentration profile
for heat-transfer-driven flows and large
Lewis numbers

n S f
0.0 1.128 —1.000
0.5 0.698 —0.724
1.0 0,399 —0479
L5 £.209 —0.289
20 0.100 —0.157
2.5 0.044 —0077
30 6017 —0034
35 0.006 —0013
40 0.002 —0.005
45 0.001 —0.001
50 0.000 0.000
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concentration difference is twice the average concent-
ration difference across a single boundary layer.
Finally, the overall Sherwood number formula (44)
applies as long as the thermal and velocity boundary
layers are distinct. Since the thickness of these layers
scales as HRa™*5(H/Ly~ ', ref. [6], the validity
condition for the Sherwood number result (44) becomes

Ra'? > ﬁ
L

(46)
If the thermal boundary layers are distinct, then the
requirement of distinct concentration boundary layers
is automatically satisfied since the Lewis number was
assumed greater than one.

NUMERICAL ANALYSIS

The complete governing equations (3)-(6) were
solved via finite differences in order to establish the
validity of the analytical results developed in the first
part of this study, and to furnish engineering heat and
mass transfer data in the parametric domains not
covered by analysis. The dimensionless formulation of
the problem solved on the computer was:

Variables
X=x/H, y={(y+H2))H

P 4
Y =—: where u=0d¥/dy, v=-—0¥dx
«Ra

T-T, C-C,
= = 47
qNH/k’ jHH/D ( )
Equations
i (T+nC)=-v?¥ (48)
ax
o oT 0¥ oT 2
¥ oC 0¥ oC 2A
Boundary conditions
o1
¥ =0, — -§—Cj—=—-1, at x=0, L/H (51)
a %
. T o
=0 == 0, P == y
¥ =0, i = 7 at y=01 (52)

where V2 = 9?/5%2 4 8%/, and where parameters n,
Ra and Le are the groups identified already in the
analysis of the boundary-layer regime.

The numerical method consisted of approximating
equation (48)-(50) using the control volume approach
developed by Patankar [7]. The fluxes of heat and mass
through the boundary of each control volume were
calculated using the power law scheme. An iterative
point-by-point method was used to solve the
discretized equations, and the convergence of the
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FIG. 2. Overall heat and mass transfer calculations showing the validity of the Oseen-linearized analysis and
the effect of the grid nonuniformity parameter s.

solution was defined based on the criterion

Z Tx+1— Tkl l
iJ

Z|7-'x+1|
i, j

where © stands for ¥, T or €, and the subscript K
indicates the iteration order, In most cases the residue,
Res, was setequal to 10~ % so that the difference between
two successive estimates of the diffusion-referenced
overall Nusselt and Sherwood numbers defined below
was less than 1%,

L 1 . ~1
Nu=— AT dy
“ H(JO y>
L 1 N -1
Sh=— p

The two-dimensional domain of Fig. 1 was covered
with a grid of (m—1)x(p—1) lines defining mxp
control volumes. The grid was nonuniform : the control
volumes situated near the boundaries were made
sufficiently small so that in all cases at least three
control volumes were situated inside the narrowest
boundary-layer region. The effect of grid non-
uniformity on accuracy is illustrated in Fig. 2and Table
2 for the case of pure heat transfer in a square domain at
a very high Rayleigh number (Ra = 10°,n =0, Le = 1,
H/L = 1). Parameter s listed next to the points aligned
vertically above the abscissa value of 10°, represents the
number of thinner control volumes generated by the
divisions (cuts) made into a control volume situated
next to the boundary. In the three cases aligned
vertically above the abscissa point 10° in Fig. 2 the total
number of control volumes in one direction (e.g.
horizontal) is fixed at p = 32. The grid was built in such

< Res (53)

(54

(35)

away that the width of a thin control volumeis 1/s of the
width of one of the interior control volumes. In order to
maintain the total number of control volumes constant
(p = 32), the remaining space (the core) is covered by a
decreasing number of control volumes of equal size.
Relative to using a uniform grid, the use of the present
nonuniform grid was found to accelerate the
convergence of the solution.

Throughout the numerical part of this study the grid
fineness used for square-shaped domains was 32 x 32.
In tall domains, H/L > 1, the number of control
volumes in the vertical direction was increased up
to m = 56 (see Table 4); the number m was such
that (m —2s)/(p — 2s) was equal to the geometric ratio
H/L. The choice of a grid fineness such as 32 x 32 for

Table 2. Numerical results for heat-transfer-driven flows
(n = 0), in a square box (H/L = 1) at Le = 1 (grid fineness

32x32)
P oin AT,AC AT AC
Ra s NuSh (x107%) (3=01) (=172
20 1 129  —516 0802 0.747
40 1 161 —375 0669 0.580
100 1 229 -218 0503 0387
200 1 306 —137 0398 0.281
400 1 412 —83 0312 0.205
1000 1 615 —42 0221 0.136
2000 1 834 —25 0166 0.101
4000 1 1126 ~15 0122 0076
10000 1 1636 —09 0079 0.055
20000 1 2082 ~06 0057 0.045
2 2207 -05 0063 0.040
40,000 1 2488 05 0044 0.039
2 2885 —03 0045 0.032
100,000 1 2812 -04 0037 0.035
3 4080 ~02 0030 0023
4 4258 —01 0032
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H/L = 1is based on the extensive grid fineness test re-
ported in ref. [5].

The particular sets of (Ra, n, Le, H/L) values chosen
for numerical analysis were organized in order to
investigate systematically the effect of each dimension-
less parameter and, ultimately, the validity of the
analytical results reported in the preceding section.

A set of representative patterns of streamlines,
isotherms and constant concentration lines is
assembled in Figs. 3(a)(d). The flow illustrated in Fig.
3(a) is heat-transfer-driven (n = 0) at high enough
Rayleigh number so that the vertical boundary layers
are distinct. The isotherms plotted in Fig. 3(b) confirm
the main assumptions made in setting up the Oseen-

(c)

409

linearized analysis, namely, the thermal boundary
layers are of relatively constant thickness, and the core
region is thermally stratified (the core temperature is
mainly a function of altitude).

The concentration field that rides on the heat-
transfer-driven flow depends to a significant degree on
the Lewis number. This dependence is illustrated in
Figs. 3(b}{d) where the Lewis number assumes, in
order, the values 1, 0.1 and 10 [note that the isotherms
of Fig. 3(b) are the same as the constant concentration
lines when Le = 17]. At small Lewis numbers[Le = 0.1,
Fig. 3(c)], the concentration boundary layers are no
longer distinct and the mass transfer through the
porous layer is mainly by diffusion in the horizontal

(d)

FiG. 3. Example of numerical solution for the flow, temperature and concentration fields (n=0, Ra = 10%,
H/L = 1): (a) streamlines; (b) isotherms (or constant concentration lines when Le = 1); (c) constant
concentration lines when Le = 0.1; (d) constant concentration lines when Le = 10.
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Table 3. Numerical results showing the effect of varying the
buoyancy ratio n in a square domain in the boundary-layer
regime (Ra = 2x 10* H/L = 1, Le = 1, grid fineness 32 x 32)

Vo Vo AT AC AT AC

n s NuSh (x107%) (x10™%) (»=0,1) (y=1/2)
—11 4 5484 8.8 0 0.023 0.017
-5 3 3892 6.8 0 0.034 0.024
-3 2 2946 5.8 0 0.045 0.031
-2 1 2082 5.6 0 0.057 0.045
-1 1 1.01 0 0 0.993 0.993
0 2 2207 0 —50 0.063 0.040
1 2 2946 0 —5.8 0.045 0.031
3 2 3745 0 -8 0.032 0.025
9 4 5484 0 —8.8 0.023 0.017

direction. The opposite effect is encountered at high
Lewis numbers [Le = 10, Fig. 3(d)], where the
concentration boundary layers become sharper than
the thermal boundary layers. In addition, at high Lewis
numbers the mass diffusivity is low enough relative to
the thermal diffusivity so that the horizontal instrusion
layers lining the top and bottom walls are considerably
sharper than their thermal counterparts [Fig. 3(b)] : the
net result is that the core of the concentration field at
high Lewis numbers is in a state of almost uniform
concentration.

The Oseen-linearized solution that was concluded by
the heat and mass transfer correlations (33) is tested
quantitatively through the numerical experiments
summarized in Tables 2—4 and Figs. 2, 4 and 5. In
addition to the effect of the grid nonuniformity
parameter s, discussed already, Fig. 2 presents a
comparison between the heat and mass transfer data of
Tables 2 and 3 and the analytical Nu, Shresult (33). The
numerical data correspond to high Rayleigh number
flows in porous media of square shape and Lewis
number equal to one; the data belong to both heat-
transfer-driven flows (n =0, Table 2) and mass-
transfer-driven flows (Table 3). On the log-log plot of
Fig. 2, the data follow very closely the (Ra}l +nj)!/®
trend anticipated theoretically, equation (33). The
numerical results approach the theoretical line as the
boundary-layer features become more pronounced, i..
as the abscissa parameter increases.
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Figure 4 tests one of the details of the Oseen-
linearized solution, namely the exponential-decay
temperature profiles in the boundary-layer region,
equation (20). Shown in Fig. 4 are numerically
calculated temperature profiles at y = 1/2 for two
different mass-transfer-driven flows (n = 1,9): these
calculations agree very well with the theoretical curves.
Furthermore, as shown in Fig. 3(a), the thickness of the
boundary-layer region is nearly constant : this feature
was used as one of the basic assumptions in setting up
the Oseen-linearized analysis.

The effect of increasing the geometric aspect ratio
H/Lis documented in Table 4 and projected on Fig. 5.
The agreement between numerical results and equation
(33) improves as the slenderness ratio H/L increases.
This trend is consistent with the parallel boundary-
layer structure of the flow assumption on which
equation (33) is based. The validity of this assumption
improves steadily as the porous medium becomes
taller, provided the boundary layers are thin enough to
remain distinct. This trend is also consistent with the
fact that the agreement between the local mid-height
numerical results and equation (33) is better than the
agreement between the overall numerical results and
equation (33).

Turning our attention now to the similarity solution
that led to equation (44), Tables 5 and 6 summarize the
numerical results obtained for porous media with
Lewis numbers other than unity. All the flows
considered in this series of numerical experiments are
heat-transfer-driven (n = 0), in accordance with the
main assumption used in constructing the similarity
solution. The numerical data of Tables 5 and 6 are
displayed in Figs. 6 and 7. In Fig. 6, all the numerical
Sherwood number data for Le > 1 are used to test the
validity of equation (44). Although the numerical
calculations fall consistently above the analyti-
cal prediction based on equation (44), the Sh ~
Le'?Ra®1? scaling law anticipated theoretically
is confirmed by numerical experiments.

Figure 7 illustrates the effect of Lewis number on the
overall mass transfer rate in a square domain where the
flow is of the boundary-layer type and is driven by
buoyancy due to temperature variations (n = 0). As
suggested earlier by the shift from Fig. 3(b) to (c}, when

Table 4. Numerical results for mass-transfer-driven flows (n = 3) in a
relatively tall domain (Le = 1, p = 32)

¥ AT AC AT AC

Aspectratio Ra  mfs Nu,Sh (x10°%) (3=0,1) (= 1/2)
5000 44/4 1348 —130 00597 00336

HL—2 10000 444 1785  —80 00444 00258
=2 20000 44/4 2344 50 00325 00199
40,000 44/4 3048  —30 00234 00156

10000 56/4 1052  —57 00380  0.0225

HiL—q 20000 5644 1382  —35 00283 00173
/=4 40000 56/4 1773 —20 00216 0.0130
100,000 48/8 2272  —13 00144 00108




Mass and heat transfer by natural convection in a vertical slot filled with porous medium 411

Fi3=u2)

Ro=20000
Le=1
8 n=i

a0 e O =g .
— analytical

24,{20)
0,005

i 1
o 0.025 0,05

H

F16. 4. The temperature distribution in the vertical boundary-layer region, showing a comparison between the
Oseen-linearized solution and numerical calculations,
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F16. 5. Overall heat and mass transfer results in tall layers, showing the validity of the Oseen-linearized
solution.
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Table 5. Numerical results for heat-transfer-

driven flows with Le # 1, showing the effect

of increasing the Rayleigh number (n = 0,
H/L =1, grid fineness 32 x 32)

Sh
Ra s Nu Le=01 Le=10

20 1 1.29 1.00 6.06
40 1 1.61 1.01 7.89
100 1 229 1.02 10.89
200 1 3.06 1.03 13.59
400 1 412 1.05 16.66
1000 1 615 1.09 20.92
3 612 — 24.03
2000 1 8.34 1.14 23,95
2 828 — 29.05
4000 1 11.26 1.23 26.48
2 11.20 — 34.67
10,000 1 16.36 1.50 28.73
4 1655 — 50.71

20,000 1 20.82 2.00

40,000 1 24388 3.23

the Lewis number is small enough so that the
concentration boundary-layer thickness becomes of
order L, the side-to-side mass transfer process is ruled
by pure diffusion and Sk becomes of order one. At the
other end of the Le spectrum, where the concentration
boundary layers are even more distinct than the
thermal boundary layers, the Sherwood number scales
as Le"? in accordance with the similarity solution
responsible for equation (44).

THE DOMAIN COVERED BY THE
PRESENT STUDY

Figure 8 presents in three dimensions the domain
occupied by the combined heat and mass transfer
phenomenon investigated in this study. Shown in the

Table 6. Numerical results showing the
response of mass transfer to varying the Lewis
number (n = 0, H/L = 1, grid fineness 32 x 32)

Ra Le s Nu Sh
1000 0.03 1 6.15 1.00
0.3 1 6.15 1.76
2 2 6.13 11.05
4 3 6.12 1595
20 4 6.12 33.23
40 5 6.12 4544
10,000 4 4 16.63 36.06
40 8* 16.37 98.58

*In this case the grid was refined to 42 x 42

same figure are the two limiting planes in which the two
analytical solutions apply. With Fig. 8 in mind,
reviewing the numerical data summarized in Tables
2-6 it is easy to see that the numerical experi-
ments summarized in the second part of this study
verify the validity of the two limiting analyses and, in
addition, bridge the gaps between the two analytical
solutions. Finally, it is worth keeping in mind that
theoretically the parametric domain of Fig. 8 is known
not only in the two limiting (boundary-layer regime)
planes highlighted in this study, but also in the low
Rayleigh number limit where the heat and mass trans-
fer phenomenon is ruled by pure diffusion. To delineate
the transition from the pure diffusion regime to the
boundary-layer regime is the object of the ‘distinct
boundary-layer’ criteria discussed in connection with
equations (33) and (46).

Comparing the theoretical and numerical results of
the present study with the numerical results of ref. [ 5]
we are in a position to evaluate the effect of boundary
conditions on engineering results such as the overall
heat and mass transfer rates. In Fig. 9 we show overall

Sh
0665 Le’Z | 4
. Le=1t
ool &4,
|- A 40
F — analytical
-

TV TrTr

Laaaal i I

el

eq.(44)

Lol

A

eaaaaal Il Aot ek

} 1 i

10 10°

10°
Ro

FiG. 6. The effect of Lewis number on mass transfer in heat transfer driven flows (n = 0, H/L = 1), and the
validity of the similarity solution, equation (44).
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FiG. 7. The transition to the pure mass diffusion regime as the Lewis number decreases (n = 0, Ra = 103,
H/L =1).

Sherwood number results for the heat-transfer-driven
boundary-layer regime (n =0, large Ra) in vertical
porous layers subjected to three sets of side conditions :

i. constant temperature and concentration, ref. [5]
ii. constant heat and mass fluxes, Table 2
iii. constant heat flux and constant concentration, i.e.
mixed boundary conditions, Table 7.

The Rayleigh number Ra plotted on the abscissa in Fig.
9is based on heat flux, equation (34). Therefore, in order
toplot the data of ref. [ 5] on Fig. 9 we first converted the
AT-based Rayleigh number of ref. [ 5] into the Rayleigh
number Ra defined by equation (34): the conversion
formula is

RaAT,ref‘[S] = Ra/Nuref.[S] (56)

Le

where, for the data of ref. [5] only, Ra is based on the
wall averaged heat flux ¢ = [} 4" dy.

Itis clear from Fig. 9 that the specification of how the
heat and mass transfer effects are distributed along the
vertical side walls of the porous layer has only a minor
impact on overall quantities such as Sh. This conclusion
is important because, given the success of the Oseen-
linearized solution in predicting the numerical results
corresponding to constant heat and mass flux from the
side, it means that the same solution can be used to
approximate the overall heat and mass transfer rates in
cases where the side conditions depart from the
constant ¢” and j” model. In those cases, however, one
must be careful to interpret the Rayleigh number Ra of
equations (33) and (34) as the Rayleigh number based
on height-averaged heat flux.

Similarity Solution
(Large Ra and Le)

e\

(o] Oseen-linearized Som

I {(Le=1, targe Ra)

FiG. 8. The (Ra, n, Le) domain for natural convection heat and mass transfer in a porous layer with fixed aspect
ratio H/L.
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F1G. 9. The effect of boundary conditions on the overall mass transfer rate through a porous layer in the heat-
transfer-driven boundary layer regime (n = 0, H/L = 1).

CONCLUDING REMARKS

In order to describe the potential for heat and mass
transfer associated with the natural circulation through
a vertical porous layer, we have developed two
analytical solutions and an extensive set of numerical
simulations designed to cover the parametric domain
in which the natural convection phenomenon can exist.
The Oseen-linearized solution that yielded the overall
heat and mass transfer correlation (33) was developed
for porous media with Le = 1 and a buoyancy effect
ruled by both temperature and concentration
variations (finite n),in the high Rayleigh number regime
where the heat and mass transfer rates differ greatly
from estimates based on the assumption of pure

diffusion. The similarity solution that produced the
overall mass transfer result (44) was developed for an
entirely different limit of the (Ra, n, Le, H/L) parametric
domain, namely, the class of heat-transfer-driven flows
with concentration boundary layers that are thinner
than the thermal and velocity boundary layers (n = 0,
Le > 1)

The parametric domain covered by the present
theory and numerical experiments is shown in Fig. 8. A
comparison with an earlier numerical study [5] of
convection driven by constant AT and AC, Fig. 9,
indicates that--properly transformed—the present
theoretical results can be used to anticipate the
numerical results of ref. [5].

Table 7. Numerical results for heat-transfer-driven natural

convection in a porous layer with mixed boundary conditions,

constant ¢” and constant AC along the vertical sides(n = 0, H/L = 1,
grid fineness 32 x 32, s = 4 unless specified in parentheses)

Sh for Le =
Ra Nu 0.1 0.3 1 3 10

100 229 1.00 106(s=1) 169 386(s=1) 779
200 3.05 2.07 9.83
400 4.10 2.55 12.44
1000 611 104 134(s=1) 337 86l(s=2) 17.17
2000 8.28 4.17 22.16
4000 11.20 5.17 28.78
10,000 1661 115 211 6.88 18.73 40.72
20,000 22.26 8.60 52.69

40,000 29.60 10.96

100,000 4246 16.03
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TRANSFERT DE CHALEUR ET DE MASSE PAR CONVECTION NATURELLE DANS UNE

COUCHE VERTICALE DE MILIEU POREUX

Résumé—On étudie analytiquement et numérigquement la convection naturelle de chaleur et de masse a
travers une couche poreuse verticale soumise 4 des flux uniformes de chaleur et de masse sur un coté.
L’écoulement est conduit par leffet combiné d’Archiméde dii aux variations de température et de
concentration 4 travers le milieu poreux. La premiére partie de I'étude contient une solution analytique
linéarisée d’Oseen pour le régime de couchelimitea Le = 1, etunesolution de similitude pour des écoulements
conduits par le transfert de chaleur (n = 0) et avec Le < 1. La seconde partie de I'étude contient une suite
d’expériences numériques qui valide les résultats analytiques et fournit des données dans le domaine
non couvert par I'analyse. Les résultats numériques s’étendent dans le domaine de nombre de Rayleigh 20 <
Ra < 103 celui du rapport de gravité —11 < n < 9, celui du rapport de forme 1 < H/L < 4 et celui du nom-

bre de Lewis 0,03 < Le < 40.

WARME- UND STOFFTRANSPORT BEI NATURLICHER KONVEKTION IN EINEM

VERTIKALEN POROSEN SPALT

Zusammenfassung— Der Wirme- und Stofftransport bei natiirlicher Konvektion durch eine vertikale pordse
Schicht wird analytisch und numerisch untersucht, wobei von der Seite her ein gleichférmiger Wirme- und
Stoffstrom aufgezwungen ist. Die Stromung wird durch Auftriebseffekte aufrechterhalten, die aufgrund von
Temperatur- und Konzentrationsunterschieden im porésen Medium auftreten. Im ersten Teil der Arbeit wird
eine analytische, nach Oseen linearisierte Losung fiir das Grenzschichtgebiet und Le = 1 vorgestelt,
auBerdem eine Ahnlichkeitslosung fiir die durch Wirmetransport verursachten Strémungen (n = 0) und
Le > 1. Der zweite Teil der Arbeit umfalit umfangreiche numerische Experimente, welche die analyti-
schen Befunde bestitigen und Daten fiir den Wirme- und Stofftransport in dem Bereich liefern, der nicht
von der analytischen LOsung abgedeckt ist. Die numerischen Ergebnisse umfassen folgende Bereiche:
Rayleigh-Zahl 20 < Ra < 10°, Auftriebskennzahl — 11 < n < 9, Verhiltnis der Abmessungen 1 < H/L < 4

und Lewis-Zahl 0,03 < Le < 40.

CBOBOJAHOKOHBEKTHBHBIN TEIJI0-U MACCOITEPEHOC B BEPTUKAJBHOW HIEH,

3ATIOJTHEHHOW MOPUCTON CPEAOV

AHRHOTSHMS—AHAHTHYECKH H YHCHCHHO H3y4aeTcs CBODOAHOKOHBEKTHBHBIN TEIUIO-H Maccoobmen
4epe3 BEPTHKAILHbIA NOPUCTBIH CHOH#, K MOBEPXHOCTH KOTOPOTO NONBOOATCH OAHOPOAHBIC NMOTOKH
Teria ¥ Macchl, Teyenue BBI3BIBACTCA NONBEMHOM CHIIOH, 00YCIOBJIGHHON Kak M3MEHEHHAMH TeMnepa-
TYpbl, TaK ¥ KOHUEHTpALHH N0 Beell mopucTol cpene. B nepsoif yacTi paGoThl MpencTaBleHO AHAMTH-
4eckoe JTMHEAPU30BaHHOe Mo O3ceHy PeLICHHE YPaBHEHHS B MTPHOIMKCHHM NOTPAaHAYHOTO CJiof ¢ Le = 1,
a TaKXe aBTOMOZIEILHOE PElLICHAE [UIA TCHYCHHH, BRI3BAHHBIX HEOJHOPOJHOCTAMM TeMiepaTypsl (n = 0)
u Le > 1. Bo BTOpO#l YacTn mpuBeleHbi NAHHBLIC YHCJIEHHBIX KCIIEPUMEHTOB, KOTOPbIE MOATBEPKIAKOT
AHANMTHYECKHE PE3YJbTATHI IO TEILIO-H MaccooOMeHy B ODJacTH NapaMeTDOB BHE aHAJMTHYECKOro
peierns. UHC/ICHHBIE PE3YAbTATHl OXBATHIBAIOT [mAma3oHsl: umcen Panes 20 < Ra < 10°, xos¢pdn-
OHEHTa MIaBy4ecTH — 11 < n < 9, reoMmeTpryeckoro oTHoueHus cropon 1 < H/L < 4 u uucna Jisronca

HMT 29:3-E

003 < Le.



