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Abstract-This paper reports an analytical and numerical study of natural convection heat and mass transfer 
through averticalporouslayer subjectedto uniformfluxesofheat andmassfrom theside.Theflowisdrivenby 
the combined buoyancy effect due to temperature and concentration variations through the porous medium. 
The first part of the study contains an analytical Oseen-linearized solution for the boundary-layer regime and 
I_.e = l,andasimilaritysolutionforheat-transfer-drivenflows(n = 0)andLe > l.Thesecondpart ofthestudy 
contains an extensive series of numerical experiments that validate the analytical results and provide heat and 
mass transfer data in the domain not covered by analysis. The numerical results cover the Rayleigh number 
range 20 < Ra < lo’, the buoyancy ratio range - 11 < n < 9, the geometric aspect ratio range 1 < H/L < 4 

and the Lewis number range 0.03 < Le < 40. 

INTRODUCTION 

THE PURPOSE of this report is to summarize a 
fundamental analytical and numerical study of heat 
and mass transfer by natural convection in a porous 
medium saturated with fluid. The special feature of this 
study is the focus on flows driven by conditions of 
uniform heat and mass flux imposed along the two 
vertical side walls of the porous layer. This set of 
conditions comes closest to simulating the boundary 
conditions for heat and mass transfer in insulation 
systems exposed to thermal radiation heating (e.g. the 
migration of moisture through double walls filled with 
fibrous or granular insulation). 

Although as demonstrated by a number of recent 
monographs [l-3] the phenomenon of natural 
convection through porous media has received 
considerable attention, the bulk of the existing work 
has been devoted to pure natural convection heat 
transfer, not to phenomena driven by the combined 
buoyancy effect due to temperature and concentration 
variations through the porous medium. The necessary 
first step in elucidating the main features of the 
combined heat and mass transfer phenomenon 
addressed in this paper has just been reported in ref. [4], 
in which pure scaling arguments were used to identify 
and sort out the most basic scales that characterize the 
flow, temperature and concentration fields in the 
immediate vicinity of a single vertical surface imbedded 
in a porous medium of different temperature and 
concentration. 

In connection with the combined heat and mass 
transfer natural convection phenomenon of ref. [4], 
considerably more important from a practical 
standpoint is the configuration sketched in Fig. 1, 
namely, the vertical porous layer of finite thickness L 
and finite height H. In the first phase of our work on this 
configuration [S], we modeled the two vertical side 
walls as impermeable surfaces with imposed constant 

temperature and concentration. We were able to show 
that numerical simulations of the phenomenon are in 
agreement with the results of the scale analysis 
conducted along the lines of ref. [4] for the single- 
surface configuration. However, due to the constant 
temperature and concentration imposed along the 
vertical boundaries, we were unable to develop closed- 
form analytical solutions for engineering heat and mass 
transfer calculations, to improve on the order-of- 
magnitude estimates produced by scale analysis. 
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FIG. 1. Schematic of a twodimensional porous layer subjected 
to uniform heat and mass fluxes in the horizontal direction. 
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NOMENCLATURE 

core temperature gradient 
core concentration gradient 
concentration boundary-layer protile 
specific heat at constant pressure 
concentration 
average side-to-side concentration 
difference 
mass diffusivity 
similarity concentration profile 
gravitational acceleration 
height of porous layer 
lateral mass flux 
thermal conductivity 
permeability 
horizontal dimension (thickness) of porous 
layer 
Lewis number 
number of control volumes in the vertical 
direction 
buoyancy ratio, equation (18) 
overall Nusselt number, equation (31) 
number of control volumes in the 
horizontal direction 
lateral heat flux 
Rayleigh number, equation (34) 
grid nonuniformity parameter (Fig. 2 and 
Table 2). 

Sh 
1 

T 

AT 

u, v 

x> Y 
i 

P 

overall Sherwood number, equation (32) 
temperature boundary-layer profile 
temperature 
average side-to-side temperature difference 
velocity components (Fig. 1) 
Cartesian coordinates (Fig. 1) 

horizontal position, L-x, Fig. 1 
vertical position, equation (43). 

symbols 
thermal diffusivity 
thermal expansion coefficient 
concentration expansion coefficient 
parameter, equation (17) 
constant, equation (41) 
similarity variable 
kinematic viscosity 
density 
streamfunction. 

Subscripts and superscripts 
R properties of the right-side boundary-layer 

region, equations (24H26) 
0 properties of the geometric center of the 

porous layer 
^ dimensionless variables, equation (47). 

In the analytical and numerical work described in the 
present report the vertical side walls are assumed to be 
subjected to uniform fluxes of heat and mass, q” and j”. 
This modelling decision is motivated first by the more 
frequent occurrence of practical conditions that 
approach the constant q” andj” description rather than 
the constant AT and AC model of ref. [S]; e.g. 
insulation layers exposed to radiation heating [6], and 
systems where the resistance to mass transfer through 
the side wall is greater than the mass transfer resistance 
contributed by the natural circulation process through 
the porous medium. The second reason for studying the 
constant q”andj” configuration ofFig. 1 is that with this 
new model it is possible to develop closed-form 
analytical solutions for overall heat and mass transfer 
calculations. Thus, one of the objectives of the 
numerical experiments summarized in this report is to 
validate and to show the rangt of applicability of the 
analytical results made possible by the constant q”, j” 

model. 

ANALYSIS OF THE 

BOUNDARY-LAYER REGIME 

Consider the two-dimensional rectangular porous 
medium sketched in Fig. 1. The vertical walls are 

subjected to uniform fluxes of heat and mass, 

constant (1) 

constant (2) 

while the horizontal walls are regarded as being 
insulated and impermeable. Note that according to 
Fig. 1, the boundaryconditions(l)and(2)mean heating 
and mass influx at x = 0, and cooling combined with 
mass efIlux at x = L. The equations governing 
the conservation of mass, momentum, energy 
and constituent in the solution-saturated porous 
medium are [ 1,2] 

au a~ 
ax+-==0 ay 
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In writing the above equations, the porous medium has 
been modeled as homogeneous and with the solid and 
liquid phases in local thermal equilibrium. The solution 
that saturates the porous matrix is modeled as a 
Boussinesq-incompressible fluid whose density varies 
as p = p,,[l -/I(T- T,)-/?c(C-CO)] where /? and & 
are the thermal and concentration expansion 
coefficients [4]. The other symbols appearing in 
equations (3)-(6) are defined in the Nomenclature and 
directly on Fig. 1. 

In this section we present analyses of the boundary- 
layer regime, that is, of the regime where the fluid 
circulates through slender regions that line the two 
vertical walls in such a way that the thickness of each 
slender region is smaller than the horizontal extent of 
the porous layer, L(Fig. 1). According to the boundary- 
layer theory, the solution-saturated porous medium 
filling each boundary-layer region is governed by 
equations simpler than equations (4)-(6), namely [ 1,2] 

aT aT a2T 
ux+vF=adX2 

ac ac a2c 
udx+vy=Daxz. 

(8) 

(9) 

In what follows we outline two analytical solutions 
pertaining to the boundary layer regime : each solution 
applies in a certain range of values of the porous 
medium Lewis number Le = a/D. 

Oseen-linearized solution 
It is possible to construct a matched boundary-layer 

solution for the constant q” and j” configuration of Fig. 
1, by following the example presented in ref. [6] for 
the limiting problem in which the mass transfer from the 
side is absent. Summarizing the results of ref. [6], the 
main features of the matched boundary-layers solution 
for uniform heat flux from the side are : (1) constant, y- 
independent, boundary-layer thickness ; (2) motionless 
core region (u = 0, u = 0); (3) linearly stratified core 
region; and (4) side-wall temperature that increases 
linearly with altitude at the same rate as the core 
temperature. These properties, in the context of the 
more general heat and mass transfer problem 
considered in this study, suggest the following 
transformation for the temperature and concentration 
fields in each vertical boundary-layer region, 

T(x, y) = t(x) + To + ay (10) 

C(x, y) = c(x) + Co + by (11) 

where the constants T, and C, are the temperature and 
concentration measured in the center of the porous 
layer (x = L/2, y = 0 on Fig. l), and where a and b are 
the unknown constant vertical gradients of tempera- 
ture and concentration measured through the core 
region. Functions t(x) and c(x) are the boundary-layer 
temperature and concentration profiles, respectively; 

in the left-side boundary-layer region on Fig. 1, these 
profiles have the property 

lim (t, c) = 0. (12) 
x+02 

Subjecting the boundary-layer equations (7H9) to 
the above transformation yields, in order, 

II = +t+8&) (13) 

au = at” (14) 

bv = DC”. (15) 

The boundary-layer momentum equation (13) resulted 
from integrating equation (7) across the boundary layer 
and claiming the core limiting condition of equation 
(12). Eliminating u and c between equations (13x15) 
yields the fourth-order linear equation for t(x), 

tiV_ftf = 0 (16) 

y2 = y(l+n) 

a& 
n=g 

(17) 

(18) 

whose general solution is 

t(x) = A, eeYX+A2 eYX+A,+A,x. (1% 

Invoking the core condition (12) and the constant heat 
flux condition (l), the boundary-layer temperature 
profile (19) reduces to 

t(n)=4”e-YX 
yk 

The concentration profile c(x) can be obtained by 
first dividing equations (14) and (15) side-by-side and 
integrating the resulting equation twice, 

c(x) = 
abq” --yx 
-e . 
Daky 

Applying the constant mass flux condition (2) to the 
concentration profile (21) yields an important 
relationship between the core stratification parameters 
a and b, 

Finally, the vertical velocity profile compatible with 
results (20), (21) and equation (13) is 

aw” V=-e-Yr 

ak 

Summarizing the results developed so far, the 
boundary-layer region lining the left vertical wall in 
Fig. 1 is characterized by the velocity distribution (23), 
the temperature distribution (10) and (20), and the 
concentration distribution (11) and (21). Based on the 
centrosymmetry of the flow pattern we can write 
immediately the appropriate expressions for the right- 
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side of the porous layer, 

.,I 

J 
CR=--e 

DY 
-yx- +C,+by (25) 

C-W 

where x _ is the horizontal coordinate measured in the 
negative x-direction away from the right wall (x = L). 
At this point the solution depends on the unknown core 
temperature and concentration gradients a and b. 
These constants can be determined by first recognizing 
that the net flow of enthalpy through the porous layer 
must at all ys be balanced by vertical thermal diffusion 
downward through the core [6], 

~~pc.aTdx+~~yc,u.T,dx- =j;kgdx (27) 

and, second, by writing the equivalent mass transfer 
condition (demanded by the zero mass flow through the 
top and bottom ends of the porous layer), 

1 rCdx+je= v,C,dx_ = [:Dgdx. (28) 

Conditions (27) and (28) yield, respectively, 

9” 
a=k(yL)“2 (29) 

(30) 

An important limitation of the analytical solution 
concluded above is determined by substituting the 
newly derived core gradients (a, b) into condition (22) : 
the result is Le = 1, i.e. the Oseen-linearized solution is 
valid only for solution-saturated porous media in 
which the thermal diffusivity is the same as the mass 
diffusivity of constituent. 

The heat and mass transfer engineering contribution 
of the solution reported above is the following set of 
analytical expressions for overall Nusselt and 
Sherwood numbers, 

*u_c-= $L 
kAT/L 2 

Sh = j” &L 
DAC/L 2 

(31) 

(32) 

where AT and AC are the side-to-side temperature 
difference and concentration difference. Recalling the 
original y notation, equation (17), and the result 
obtained for a, equation (29), the Nu and Sh expressions 
can be rewritten as 

Nu = Sh = ! ! -4’5 
0 2 L 

R@( 1+ n)2’5 (33) 

where Ra is the Rayleigh number based on uniform heat 
flux 

Ra = KdfH2q” 
avk ’ 

(34) 

The analytical results culminating with equation (33) 
are valid provided the thermal and concentration 
boundary layers are distinct (i.e. thinner than L). Since 
the Nu and Sh definitions (31) and (32) are based on the 
pure diffusion estimates, the distinct-boundary-layers 
requirement translates into the condition (Nu, Sh) > 1, 
or (L/,iH)R&t(l +n)liz > O(1). 

One final observation concerns the sign of (1 +n), 
which was assumed positive in equation (17). The heat 
and mass transfer solution obtained for positive (1 + n) 
values holds also for negative values if in equation (33) 
the term (1 + n) is replaced by 11 + nl. In order to see the 
generality of equation (33), consider that the 
momentum equation (7) can be rewritten as : 

a0 QB aT 
-=+-(l+n(--ax. 
ax 

(7’) 

Since aTlax does not change sign (q” is imposed, as 
shown in Fig. l), the change in the sign of (1+ n) has the 
effect of changing the sign of u, i.e. that of reversing the 
flow. Equation (33) with (1 + n) replaced by 11 +nl, is 
supported by the numerical results discussed later in 
this paper. 

Similarity solutionfor Le >> 1 and lnl << 1 
The effect of Lewis number on the mass transfer rate 

can be determined analytically by focusing on the so- 
called ‘heat-transfer-driven flow’ limit [4] where 
parameter n is in absolute value considerably smaller 
than one. In this limit the velocity and temperature 
fields are the ones reported already for the pure heat 
transfer problem [6]. If we now consider the mass 
transfer effected by this heat-transfer-driven flow, we 
must solve the constituent conservation equation (9) 
with u = 0 and v given by equation (23) with n = 0. In 
the limit of large Lewis numbers, the concentration 
boundary-layer region in which equation (9) is to be 
solved is much thinner than the velocity boundary- 
layer region. Consequently, in place of 0 in equation (9) 
we can use u(x) evaluated at x = 0, and the constituent 
conservation equation reduces to 

v(O) E = D 2. 
ay 

(35) 

This equation can be solved via similarity formulation 
subject to the condition of uniform mass flux from the 
side, equation (2), and that of a constant average 
concentration core filling the porous medium situated 
outside the concentration boundary layer. Omitting 
the algebra, the similarity formulation of the mass 
transfer problem is 

f~~+;f~_:f =o (36) 
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f’=-1 at q=O 

j-+0 as ~-+a 

(37) 

(38) 

where 

(40) 

(39) 

H 115 

I= x 

0 

&F5, const 161 (41) 

x 
x* =m 

1 
j=y+- Fig.l. 

H 2’ 

The problem stated in equations (36)-(43) was solved 
numerically using a fourth-order Rungt+Kutta scheme 
and integrating equation (36) from rl = 0 to q values of 
10 or greater in accordance with the standard shooting 
method. The numerical solution reported in Table 1 
was obtained using the shooting success criterion 
f < 10e4 in place of the boundary condition (38). The 
A? step used to perform the integration was 0.001; this 
step size was found to be small enough to render the 
solution insensitive to further decreases in the step size. 

The mass transfer result contained in the similarity 
solution of Table 1 can be reported as the overall 
Sherwood number 

Sh=j”_ 
DACjL 

Le”2Ras’i0 (44) 

where AC is the H-averaged concentration difference 
between the two sides of the porous layer, 

s n/2 

AC=; _ (C-Col,=o dy (45) 
H/2 

with the difference C - Co being given by equation (39). 
The factor 2 appearing on the RHS of equation (45) 
accounts for the fact that the average side-to-side 

Table 1. S~iIa~ty conc~tration profile 
for heat-transfer-driven flows and large 

Lewis numbers 

II f f 

0.0 1.128 
0.5 0.698 
1.0 0.399 
1.5 0.209 
2.0 0.100 
2.5 0.044 
3.0 0.017 
3.5 0.006 
4.0 0.002 
4.5 0.001 
5.0 0.000 

- 1.000 
-0.724 
- 0.479 
-0.289 
-0.157 
- 0.077 
- 0.034 
-0.013 
-0.005 
-0.001 

0.000 

concentration difference is twice the average concent- 
ration difference across a single boundary layer. 

Finally, the overall Sherwood number formula (44) 
applies as long as the thermal and velocity boundary 
layers are distinct. Since the thickness of these layers 
scales as HRu-~~~(H/L)-‘~~, ref. [6], the validity 
condition for the Sherwood number result (44) becomes 

H 
Ra”2 > - 

L’ (46) 

If the thermal boundary layers are distinct, then the 
requirement of distinct concentration boundary layers 
is automatically satisfied since the Lewis number was 
assumed greater than one. 

NUMERICAL ANALYSIS 

The complete governing equations (3)-(6) were 
solved via finite differences in order to establish the 
validity of the analytical results developed in the first 
part of this study, and to furnish engineering heat and 
mass transfer data in the parametric domains not 
covered by analysis. The dimensionless formulation of 
the problem solved on the computer was : 

Variables 

i = xJH, $ = (y + H/2)/H 

9 = -&; where u = aY/ay, u = -aY,Gx 

p T-To c-c, 
=q”Hlkp e=---.-- 

j”H/D 
(47) 

Equations 

(48) 

( a*aF aYaa$ 
Ra agz--zap 

> 
=V2P (49) 

LeRa Eat ( aYae ---_ 
ag aa ai aj > 

= v2e tw 

Boundary conditions 

Y = 0, g = $= -1, at 3 = 0, L/H (51) 

where V2 = a2/&?2 + a2/aj2, and where parameters n, 
Ra and Le are the groups identified already in the 
analysis of the boundary-layer regime. 

The numerical method consisted of appro~mating 
equation (48)-(50) using the control volume approach 
developed by Patankar [7]. The fluxes of heat and mass 
through the boundary of each control volume were 
calculated using the power law scheme. An iterative 
point-by-point method was used to solve the 
discretized equations, and the convergence of the 
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FIG. 2. Overall heat and mass transfer calculations showing the validity of the Oseen-linearized analysis and 
the effect of the grid nonuniformity parameter s. 

solution was defined based on the criterion 

7K+1-7Kl 
1 

I 

< Res 

C l~x+11 

(53) 

i,i ! 

where T stands for 9, ? or c, and the subscript K 

indicates the iteration order. In most cases the residue, 
Res, was set equal to 10m5 so that the difference between 
two successive estimates of the diffusion-referenced 
overall Nusselt and Sherwood numbers defined below 
was less than l%, 

iVu=; 
1 

(s > 
-1 

A?dj (54) 
0 

Sh =; 
-1 

The two-dimensional domain of Fig. 1 was covered 

with a grid of (m-l)x(p-1) lines defining mxp 

control volumes. The grid was nonuniform : the control 
volumes situated near the boundaries were made 
sufficiently small so that in all cases at least three 
control volumes were situated inside the narrowest 
boundary-layer region. The effect of grid non- 
uniformity on accuracy is illustrated in Fig. 2 and Table 
2 for the case ofpure heat transfer in a square domain at 
a very.high Rayleigh number (Ra = 105, n = 0, Le = 1, 
H/L = 1). Parameter s listed next to the points aligned 
vertically above the abscissa value of lo’, represents the 
number of thinner control volumes generated by the 
divisions (cuts) made into a control volume situated 
next to the boundary. In the three cases aligned 
vertically above the abscissa point 10’ in Fig. 2 the total 
number of control volumes in one direction (e.g. 
horizontal) is fixed at p = 32. The grid was built in such 

a way that the width ofa thin control volume is l/s of the 
width of one of the interior control volumes. In order to 
maintain the total number ofcontrol volumes constant 
@ = 32), the remaining space (the core) is covered by a 
decreasing number of control volumes of equal size. 
Relative to using a uniform grid, the use of the present 
nonuniform grid was found to accelerate the 
convergence of the solution. 

Throughout the numerical part of this study the grid 
fineness used for square-shaped domains was 32 x 32. 
In tall domains, H/L > 1, the number of control 
volumes in the vertical direction was increased up 
to m = 56 (see Table 4); the number m was such 
that (m -2s)/(p-2s) was equal to the geometric ratio 
H/L. The choice of a grid fineness such as 32 x 32 for 

Table 2. Numerical results for heat-transfer-driven flows 
(n = 0), in a square box (H/L = 1) at Le = 1 (grid fineness 

32 x 32) 

q’,i, A?, AC AT AC 
Ra s Nu, Sh (x 10-3) (j = 0, 1) (j = l/2) 

20 1 1.29 -51.6 0.802 0.141 
40 1 1.61 - 37.5 0.669 0.580 

100 1 2.29 -21.8 0.503 0.387 
200 1 3.06 - 13.7 0.398 0.28 1 
400 1 4.12 -8.3 0.312 0.205 

1000 1 6.15 -4.2 0.221 0.136 
2m 1 8.34 -2.5 0.166 0.101 
4000 1 11.26 - 1.5 0.122 0.076 

10,000 1 16.36 -0.9 0.079 0.055 
20,000 1 20.82 -0.6 0.057 0.045 

2 22.07 -0.5 0.063 0.040 
40,000 1 24.88 -0.5 0.044 0.039 

2 28.85 -0.3 0.045 0.032 
100,000 1 28.12 -0.4 0.037 0.035 

3 40.80 -0.2 0.030 0.023 
4 42.58 -0.1 0.032 0.021 
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H/L = 1 is based on the extensive grid fineness test re- 
ported in ref. [S]. 

The particular sets of (Ra, n, Le, H/L) values chosen 
for numerical analysis were organized in order to 
investigate systematically the effect of each dimension- 
less parameter and, ultimately, the validity of the 
analytical results reported in the preceding section. 

A set of representative patterns of streamlines, 
isotherms and constant concentration lines is 
assembled in Figs. 3(a)-(d). The flow illustrated in Fig. 
3(a) is heat-transfer-driven (n = 0) at high enough 
Rayleigh number so that the vertical boundary layers 
are distinct. The isotherms plotted in Fig. 3(b) confirm 
the main assumptions made in setting up the Oseen- 

linearized analysis, namely, the thermal boundary 
layers are of relatively constant thickness, and the core 
region is thermally stratified (the core temperature is 
mainly a function of altitude). 

The concentration field that rides on the heat- 
transfer-driven ftow depends to a significant degree on 
the Lewis number. This dependence is illustrated in 
Figs. 3(bHd) where the Lewis number assumes, in 
order, the values LO.1 and 10 [note that the isotherms 
of Fig. 3(b) are the same as the constant concentration 
lines when Le = 11. At small Lewis numbers [Le = 0.1, 
Fig. 3(c)], the concentration boundary layers are no 
longer distinct and the mass transfer through the 
porous layer is mainly by diffusion in the horizontal 

(a) (b) 

(d) 
FIG. 3. Example of numerical solution for the flow, temperature and concentration fields (n = 0, Ra = lo“, 
H/L = 1): (a) streamlines; (b) isotherms (or constant concentration lines when Le = 1); (c) constant 

concentration lines when I.Q = 0.1; (d) constant concentration lines when Le = 10. 
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Table 3. Numerical results showing the effect of varying the 
buoyancy ratio n in a square domain in the boundary-layer 
regime (Ra = 2 x 104, H/L = 1, Le = 1, grid fineness 32 x 32) 

9. A’?A,c AtAt 
n s Nu, Sh ( xTTT4) (x +) (jt =’ 0, 1) (Ji 2 l/2) 

-11 4 54.84 8.8 0 0.023 0.017 
-5 3 38.92 6.8 0 0.034 0.024 
-3 2 29.46 5.8 0 0.045 0.03 1 
-2 1 20.82 5.6 0 0.057 0.045 
-1 1 1.01 0 0 0.993 0.993 

0 2 22.07 0 -5.0 0.063 0.040 
1 2 29.46 0 -5.8 0.045 0.031 
3 2 37.45 0 -7.8 0.032 0.025 
9 4 54.84 0 -8.8 0.023 0.017 

direction. The opposite effect is encountered at high 
Lewis numbers [Le = 10, Fig. 3(d)], where the 
concentration boundary layers become sharper than 
the thermal boundary layers. In addition, at high Lewis 
numbers the mass diffusivity is low enough relative to 
the thermal diffusivity so that the horizontal instrusion 
layers lining the top and bottom walls are considerably 
sharper than their thermal counterparts [Fig. 3(b)] : the 
net result is that the core of the concentration field at 
high Lewis numbers is in a state of almost uniform 
concentration. 

The Oseen-linearized solution that was concluded by 
the heat and mass transfer correlations (33) is tested 
quantitatively through the numerical experiments 
summarized in Tables 2-4 and Figs. 2, 4 and 5. In 
addition to the effect of the grid nonuniformity 
parameter s, discussed already, Fig. 2 presents a 
comparison between the heat and mass transfer data of 
Tables 2 and 3 and the analytical Nu, Sh result (33). The 
numerical data correspond to high Rayleigh number 
flows in porous media of square shape and Lewis 
number equal to one; the data belong to both heat- 
transfer-driven flows (n = 0, Table 2) and mass- 
transfer-driven flows (Table 3). On the log-log plot of 
Fig. 2, the data follow very closely the (Rail +nl)“’ 
trend anticipated theoretically, equation (33). The 
numerical results approach the theoretical line as the 
boundary-layer features become more pronounced, i.e. 
as the abscissa parameter increases. 

Figure 4 tests one of the details of the Oseen- 
linearized solution, namely the exponential-decay 
temperature profiles in the boundary-layer region, 
equation (20). Shown in Fig. 4 are numerically 
calculated temperature profiles at p = l/2 for two 
different mass-transfer-driven flows (n = 1,9): these 
calculations agree very well with the theoretical curves. 
Furthermore, as shown in Fig. 3(a), the thickness of the 
boundary-layer region is nearly constant : this feature 
was used as one of the basic assumptions in setting up 
the Oseen-linearized analysis. 

The effect of increasing the geometric aspect ratio 
H/L is documented in Table 4 and projected on Fig. 5. 
The agreement between numerical results and equation 
(33) improves as the slenderness ratio H/L increases. 
This trend is consistent with the parallel boundary- 
layer structure of the flow assumption on which 
equation (33) is based. The validity of this assumption 
improves steadily as the porous medium becomes 
taller, provided the boundary layers are thin enough to 
remain distinct. This trend is also consistent with the 
fact that the agreement between the local mid-height 
numerical results and equation (33) is better than the 
agreement between the overall numerical results and 
equation (33). 

Turning our attention now to the similarity solution 
that led to equation (44) Tables 5 and 6 summarize the 
numerical results obtained for porous media with 
Lewis numbers other than unity. All the flows 
considered in this series of numerical experiments are 
heat-transfer-driven (n = 0), in accordance with the 
main assumption used in constructing the similarity 
solution. The numerical data of Tables 5 and 6 are 
displayed in Figs. 6 and 7. In Fig. 6, all the numerical 
Sherwood number data for Le 2 1 are used to test the 
validity of equation (44). Although the numerical 
calculations fall consistently above the analyti- 
cal prediction based on equation (44) the Sh - 
Le1/2Ra3’10 scaling law anticipated theoretically 
is confirmed by numerical experiments. 

Figure 7 illustrates the effect of Lewis number on the 
overall mass transfer rate in a square domain where the 
flow is of the boundary-layer type and is driven by 
buoyancy due to temperature variations (n = 0). As 
suggested earlier by the shift from Fig. 3(b) to(c), when 

Table 4. Numerical results for mass-transfer-driven flows (n = 3) in a 
relatively tall domain (Le = 1, p = 32) 

lfid” AzAe ATAC 
Aspect ratio Ra m/s Nu,Sh (x~O-~) (j=O,l) (j=l/2) 

5000 44/4 13.48 - 13.0 0.0597 
H/L = 2 10,000 44/4 17.85 - 8.0 0.0444 

20,000 4414 23.44 - 5.0 0.0325 
40,000 44/4 30.48 -3.0 0.0234 

10,000 56/4 10.52 -5.7 0.0380 
HJL=4 20,000 56/4 13.82 -3.5 0.0283 

40,000 5614 17.73 -2.0 0.0216 
100,000 48/8 22.72 -1.3 0.0144 

0.0336 
0.0258 
0.0199 
0.0156 

0.0225 
0.0173 
0.0130 
0.0108 



Mass and heat transfer by natural convection in a vertical slot filled with porous medium 411 

Ffe= 20000 

Le= 1 

6 

“=, 
n=9 

- analytical 

aM2ot 

t t 
0.025 0.05 

2 

FKS. 4. The tem~rature distribution in the vertical boundary-layer region, showing a~mpa~son between the 
Oseen-linearized solution and numerical calculations, 
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FIG. 5. Overall heat and mass transfer results in tall layers, showing the validity of the Oseen-linearized 
solution. 
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Table 5. Numerical results for heat-transfer- 
driven flows with Le # 1, showing the effect 
of increasing the Rayleigh number (n = 0, 

H/L = 1, grid fineness 32 x 32) 

Sh 
Ra s Nu Le = 0.1 Le = 10 

20 1 1.29 1.00 6.06 
40 1 1.61 1.01 7.89 

100 1 2.29 1.02 10.89 
200 1 3.06 1.03 13.59 
400 1 4.12 1.05 16.66 

loo0 1 6.15 1.09 20.92 
3 6.12 - 24.03 

2000 1 8.34 1.14 23.95 
2 8.28 ~ 29.05 

4000 1 11.26 1.23 26.48 
2 11.20 - 34.67 

10,000 1 16.36 1.50 28.73 
4 16.55 - 50.71 

20,000 1 20.82 2.00 
40,000 1 24.88 3.23 

the Lewis number is small enough so that the 
concentration boundary-layer thickness becomes of 
order L, the side-to-side mass transfer process is ruled 
by pure diffusion and Sh becomes of order one. At the 
other end of the Le spectrum, where the concentration 
boundary layers are even more distinct than the 
thermal boundary layers, the Sherwood number scales 
as Z.P in accordance with the similarity solution 
responsible for equation (44). 

THE DOMAIN COVERED BY THE 
PRESENT STUDY 

Figure 8 presents in three dimensions the domain 
occupied by the combined heat and mass transfer 
phenomenon investigated in this study. Shown in the 

Table 6. Numerical results showing the 
response of mass transfer to varying the Lewis 
number (n = 0, H/L = 1, grid fineness 32 x 32) 
__. 

Ra Le s Nu Sh 

1000 0.03 1 6.15 1.00 
0.3 1 6.15 1.76 
2 2 6.13 11.05 
4 3 6.12 15.95 

20 4 6.12 33.23 
40 5 6.12 45.44 

10,000 4 4 16.63 36.06 
40 8* 16.37 98.58 

*In this case the grid was refined to 42 x 42 

same figure are the two limiting planes in which the two 
analytical solutions apply. With Fig. 8 in mind, 
reviewing the numerical data summarized in Tables 
2-6 it is easy to see that the numerical experi- 
ments summarized in the second part of this study 
verify the validity of the two limiting analyses and, in 
addition, bridge the gaps between the two analytical 
solutions. Finally, it is worth keeping in mind that 
theoretically the parametric domain of Fig. 8 is known 
not only in the two limiting (boundary-layer regime) 
planes highlighted in this study, but also in the low 
Rayleigh number limit where the heat and mass trans- 
fer phenomenon is ruled by pure diffusion. To delineate 
the transition from the pure diffusion regime to the 
boundary-layer regime is the object of the ‘distinct 
boundary-layer’ criteria discussed in connection with 
equations (33) and (46). 

Comparing the theoretical and numerical results of 
the present study with the numerical results of ref. [.5] 
we are in a position to evaluate the effect of boundary 
conditions on engineering results such as the overall 
heat and mass transfer rates. In Fig. 9 we show overall 

Sh 
0.665 Le”T _ 

FIG. 6. The effect of Lewis number on mass transfer in heat transfer driven flows (n = 0, H/L = I), and the 
validity of the similarity solution, equation (44). 
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FIG. 7. The transition to the pure mass diffusion regime as the Lewis number decreases (n = 0, Ra = 103, 
H/L = 1). 

Sherwood number results for the heat-transfer-driven 
boundary-layer regime (n = 0, large Ra) in vertical 
porous layers subjected to three sets of side conditions : 

i. constant temperature and concentration, ref. [S] 
ii. constant heat and mass fluxes, Table 2 

iii. constant heat flux and constant concentration, i.e. 
mixed boundary conditions, Table 7. 

The Rayleigh number Ra plotted on the abscissa in Fig. 
9 is based on heat flux, equation (34). Therefore, in order 
to plot the data of ref. [S] on Fig. 9 we first converted the 
AT-based Rayleigh number ofref. [S] into the Rayleigh 
number Ra defined by equation (34): the conversion 
formula is 

where, for the data of ref. [S] only, Ra is based on the 
wall averaged heat flux 4” = JA q” d3. 

It is clear from Fig. 9 that the specification of how the 
heat and mass transfer effects are distributed along the 
vertical side walls of the porous layer has only a minor 
impact on overall quantities such as Sh. This conclusion 
is important because, given the success of the Oseen- 
linearized solution in predicting the numerical results 
corresponding to constant heat and mass flux from the 
side, it means that the same solution can be used to 
approximate the overall heat and mass transfer rates in 
cases where the side conditions depart from the 
constant q” andj” model. In those cases, however, one 
must be careful to interpret the Rayleigh number Ra of 
equations (33) and (34) as the Rayleigh number based 
on height-averaged heat flux. 

Similarity Solution 

(Large Ra and Le) 

(Le=l , large Ro) 

FIG. 8. The (Ra, n, Le) domain for natural convection heat and mass transfer in a porous layer with fixed aspect 
ratio HIL. 
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FIG. 9. The effect of boundary conditions on the overall mass transfer rate through a porous layer in the heat- 

transfer-driven boundary layer regime (n = 0, H/L = 1). 

CONCLUDING REMARKS 

In order to describe the potential for heat and mass 
transfer associated with thenaturalcirculation through 
a vertical porous layer, we have developed two 
analytical solutions and an extensive set of numerical 
simulations designed to cover the parametric domain 
in which the natural convection phenomenon can exist. 
The Oseen-linearized solution that yielded the overall 
heat and mass transfer correlation (33) was developed 
for porous media with Le = 1 and a buoyancy effect 
ruled by both temperature and concentration 
variations (finite n), in the high Rayleigh number regime 
where the heat and mass transfer rates differ greatly 
from estimates based on the assumption of pure 

diffusion. The similarity solution that produced the 
overall mass transfer result (44) was developed for an 
entirely different limit of the (Ra, n, Le, H/L) parametric 
domain, namely, the class of heat-transfer-driven flows 
with concentration boundary layers that are thinner 
than the thermal and velocity boundary layers (n = 0, 
Le > 1). 

The parametric domain covered by the present 
theory and numerical experiments is shown in Fig. 8. A 
comparison with an earlier numerical study [S] of 
convection driven by constant AT and AC, Fig. 9, 
indicates that-properly transformed-the present 
theoretical results can be used to anticipate the 
numerical results of ref. [S]. 

Table 7. Numerical results for heat-transfer-driven natural 
convection in a porous layer with mixed boundary conditions, 
constant q” and constant AC along the vertical sides (n = 0, H/L = 1, 

grid fineness 32 x 32, s = 4 unless specified in parentheses) 

Sh for Le = 

Ra NU 0.1 

100 2.29 1.00 
200 3.05 
400 4.10 

1000 6.11 1.04 
2000 8.28 
4000 11.20 

10,000 16.61 1.15 
20,000 22.26 
40,000 29.60 

100,000 42.46 

0.3 1 

1.06(s = 1) 1.69 
2.07 
2.55 

1.34(s = 1) 3.37 
4.17 
5.17 

2.11 6.88 
8.60 

10.96 
16.03 

3 10 

3.86(s = 1) 7.79 
9.83 
12.44 

8.61(s = 2) 17.17 
22.16 
28.78 

18.73 40.72 
52.69 
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TRANSFERT DE CHALEUR ET DE MASSE PAR CONVECTION NATURELLE DANS UNE 
COUCHE VERTICALE DE MILIEU POREUX 

R&m-On Qtudie analytiquement et numbriquement la convection naturelle de chaleur et de masse ri 
travers une couche poreuse verticale soumise B des flux uniformes de chaleur et de masse sur un cot&. 
L’&oulement est conduit par l’effet combin& d’Archim&de dii aux variations de tem@rature et de 
~on~nt~tion ri travers le milieu poreux. La premi&e partie de l’ktude contient une solution analytique 
lintaris&ed’Oseen pourle r~~mede~uchel~ite~ Le = l,et une solution de s~ilitudepourdes &coulements 
conduits par le transfert de chaleur (n = 0) et avec Le < 1. La seconde partie de Nude contient une suite 
d’exp&iences num&iques qui valide les r&&tats analytiques et fournit des donnCes dans le domaine 
non couvert par l’analyse. Les rbsultats numeriques s’ktendent dans le domaine de nombre de Rayleigh 20 < 
Ra -c lOs, celui du rapport de gravitb - 11 < n c 9, celui du rapport de forme 1 < H/L i 4 et celui du nom- 

bre de Lewis 0,03 < Le < 40. 

WARME- UND STOF~RANSPORT BEI NA~RLI~HER KONVEKTION IN EINEM 
VERTIKALEN POROSEN SPALT 

Zmammenfns.wng-Der Wlrme- und Stofftransport bei natilrlicher Konvektion durch eine vertikale poriise 
Schicht wird analytisch und numerisch untersucht, wobei von der Seite her ein gleichfiirmiger W&me- und 
Stoffstrom aufgezwungen ist. Die Striimung wird durch Auftriebseffekte aufrechterhalten, die aufgrund von 
Temperatur- und Konzentrationsunterschieden im porijsen Medium auftreten. Im ersten Teil der Arbeit wird 
eine analytische, nach Oseen linearisierte L&sung filr das Grenzschichtgebiet und Le = 1 vorgestellt, 
aul3erdem eine ~hnlic~eitsl~sung fiir die durch Wgrmetransport verursachten StrGmungen (n = 0) und 
Le > 1. Der zweite Teil der Arbeit umfai3t umfangrei~e numerische Experimente, welche die analyti- 
schen Befunde bestiitigen und Daten f% den W&me- und Stofft~nspo~ in dem Bereich liefern, der nicht 
von der analytischen Lljsung abgedeckt ist. Die numerischen Ergebnisse umfassen folgende Bereiche: 
Rayleigh-Zahl20 C Ra -c 105, Auftriebskennzahl - 11 < n < 9, Verhlltnis der Abmessungen 1 < H/L < 4 

und Lewis-ZahlO,O3 < Le < 40. 

CBO6OfiHOKOHBEKTMBHbIfi TEfIJIO-M MACCOREPEHOC B BEPTMKAJIbHOfi ~EJIM, 
3A~O~HEHHO~ l-lOP&iCTOfi CPEflOz;1 

A~~~~-A~an~T~Yecan n SncJIeHHO WyraeTca CBO6O~HOKOHBeKT~BHbI~ Tenno-n MaCCOO6MeH 

Vepe3 BepTnXaJIbHbIfi IIOpnCTbIfi CJIOii, K IIOBepXHOCTn I‘OTOpOI‘O nORBOfiRTCR OL,HOpOJ&IbIe IIOTOKH 

Tenna u Maccbx. Tesemie Bbl3bIaaeTca nonaeMHoii cenol, 06yCJiOBJIeHHOk KaK n3MeHennaMn TeMnepa- 
TypbI,TaK n KOHUeHTpaWiLi IlO BCeti IIOpEiCTOti Cpene.B IIepBOii YaCTM pa6OTbI lIpenCTaBJWH0 aHWI&iTEi- 

YeCKOennHeapn30BaHHOe no 03eeHypeLIIeHHeypaBHeHna B npH6JIHxeHHH nOrpaHHYHOrOcnorc Le = 1, 
a TaKXe aBTOMOReJIbHOe PeIUeHAe NIX TWieIiBfi,BbI3BaHHbIX HeOJlHOpOJlIiOCTRMn TeMIIepaTypbI(tI = 0) 

n Le> 1. BO BTOPOii WCTH ITpHBeneHbI LlaHHbW YnCneHHbIx 3KCIIepI%MeHTOB,KOTOpbIe IIOJITaepXQIaloT 

aHannTArecKne pe3ynbralbr no Tenno-n MaCCOO6MeHy B o6nacTn napaMeTpos BHe aHanmmecKor0 
pememr. %cneHfme pe3ynbTaTbI 0xaaTbIBafOT nnana3oebI: mcen P3nea 201 Ra I lo’, K03@n- 
uueHTa nnaayqe~~ - 11 I n 5 9, reoMeTprrrecrcor0 0THomenna cropon 1 I H/L I 4 n rncna Jlbmuca 

0.03 I Le. 
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